3.131 \(\int \frac{\sqrt{c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x))}{\sqrt{a+b \tan (e+f x)}} \, dx\)

Optimal. Leaf size=287 \[ -\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a-i b}}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a+i b}}+\frac{(-a C d+2 b B d+b c C) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} \sqrt{d} f}+\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f} \]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Ta
n[e + f*x]])])/(Sqrt[a - I*b]*f)) - ((B - I*(A - C))*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f
*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f) + ((b*c*C + 2*b*B*d - a*C*d)*ArcTanh[(Sqrt[
d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/(b^(3/2)*Sqrt[d]*f) + (C*Sqrt[a + b*Tan[e +
f*x]]*Sqrt[c + d*Tan[e + f*x]])/(b*f)

________________________________________________________________________________________

Rubi [A]  time = 2.63334, antiderivative size = 287, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 49, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.163, Rules used = {3647, 3655, 6725, 63, 217, 206, 93, 208} \[ -\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a-i b}}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a+i b}}+\frac{(-a C d+2 b B d+b c C) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} \sqrt{d} f}+\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[a + b*Tan[e + f*x]],x]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Ta
n[e + f*x]])])/(Sqrt[a - I*b]*f)) - ((B - I*(A - C))*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f
*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f) + ((b*c*C + 2*b*B*d - a*C*d)*ArcTanh[(Sqrt[
d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/(b^(3/2)*Sqrt[d]*f) + (C*Sqrt[a + b*Tan[e +
f*x]]*Sqrt[c + d*Tan[e + f*x]])/(b*f)

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3655

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n*(A + B*ff*x + C*ff^2*x^2))/(1 + ff^2*x^2), x], x, Tan[
e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{\sqrt{a+b \tan (e+f x)}} \, dx &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{\int \frac{\frac{1}{2} (2 A b c-C (b c+a d))+b (B c+(A-C) d) \tan (e+f x)+\frac{1}{2} (b c C+2 b B d-a C d) \tan ^2(e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{b}\\ &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} (2 A b c-C (b c+a d))+b (B c+(A-C) d) x+\frac{1}{2} (b c C+2 b B d-a C d) x^2}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{b f}\\ &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{\operatorname{Subst}\left (\int \left (\frac{b c C+2 b B d-a C d}{2 \sqrt{a+b x} \sqrt{c+d x}}+\frac{b (A c-c C-B d)+b (B c+(A-C) d) x}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )}\right ) \, dx,x,\tan (e+f x)\right )}{b f}\\ &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{\operatorname{Subst}\left (\int \frac{b (A c-c C-B d)+b (B c+(A-C) d) x}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{b f}+\frac{(b c C+2 b B d-a C d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{\operatorname{Subst}\left (\int \left (\frac{i b (A c-c C-B d)-b (B c+(A-C) d)}{2 (i-x) \sqrt{a+b x} \sqrt{c+d x}}+\frac{i b (A c-c C-B d)+b (B c+(A-C) d)}{2 (i+x) \sqrt{a+b x} \sqrt{c+d x}}\right ) \, dx,x,\tan (e+f x)\right )}{b f}+\frac{(b c C+2 b B d-a C d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b \tan (e+f x)}\right )}{b^2 f}\\ &=\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{(i+x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac{(b c C+2 b B d-a C d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{b^2 f}+\frac{(i b (A c-c C-B d)-b (B c+(A-C) d)) \operatorname{Subst}\left (\int \frac{1}{(i-x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac{(b c C+2 b B d-a C d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} \sqrt{d} f}+\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{-a+i b-(-c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{f}+\frac{(i b (A c-c C-B d)-b (B c+(A-C) d)) \operatorname{Subst}\left (\int \frac{1}{a+i b-(c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{b f}\\ &=-\frac{(i A+B-i C) \sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a-i b} f}-\frac{(B-i (A-C)) \sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a+i b} f}+\frac{(b c C+2 b B d-a C d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} \sqrt{d} f}+\frac{C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b f}\\ \end{align*}

Mathematica [A]  time = 4.05468, size = 441, normalized size = 1.54 \[ \frac{\frac{b \left (\sqrt{-b^2} (A c-B d-c C)+b d (A-C)+b B c\right ) \tan ^{-1}\left (\frac{\sqrt{\frac{b d}{\sqrt{-b^2}}+c} \sqrt{a+b \tan (e+f x)}}{\sqrt{\sqrt{-b^2}-a} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{\sqrt{-b^2}-a} \sqrt{\frac{b d}{\sqrt{-b^2}}+c}}+\frac{b \left (\sqrt{-b^2} (A c-B d-c C)-b (d (A-C)+B c)\right ) \tan ^{-1}\left (\frac{\sqrt{-\frac{\sqrt{-b^2} d+b c}{b}} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+\sqrt{-b^2}} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a+\sqrt{-b^2}} \sqrt{-\frac{\sqrt{-b^2} d+b c}{b}}}+\frac{\sqrt{b} \sqrt{c-\frac{a d}{b}} (-a C d+2 b B d+b c C) \sqrt{\frac{b (c+d \tan (e+f x))}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c-\frac{a d}{b}}}\right )}{\sqrt{d} \sqrt{c+d \tan (e+f x)}}+b C \sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}}{b^2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[a + b*Tan[e + f*x]],x]

[Out]

((b*(b*B*c + b*(A - C)*d + Sqrt[-b^2]*(A*c - c*C - B*d))*ArcTan[(Sqrt[c + (b*d)/Sqrt[-b^2]]*Sqrt[a + b*Tan[e +
 f*x]])/(Sqrt[-a + Sqrt[-b^2]]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[-a + Sqrt[-b^2]]*Sqrt[c + (b*d)/Sqrt[-b^2]])
+ (b*(Sqrt[-b^2]*(A*c - c*C - B*d) - b*(B*c + (A - C)*d))*ArcTan[(Sqrt[-((b*c + Sqrt[-b^2]*d)/b)]*Sqrt[a + b*T
an[e + f*x]])/(Sqrt[a + Sqrt[-b^2]]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + Sqrt[-b^2]]*Sqrt[-((b*c + Sqrt[-b^2]
*d)/b)]) + b*C*Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]] + (Sqrt[b]*Sqrt[c - (a*d)/b]*(b*c*C + 2*b*B*d
 - a*C*d)*ArcSinh[(Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c - (a*d)/b])]*Sqrt[(b*(c + d*Tan[e + f*x])
)/(b*c - a*d)])/(Sqrt[d]*Sqrt[c + d*Tan[e + f*x]]))/(b^2*f)

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{(A+B\tan \left ( fx+e \right ) +C \left ( \tan \left ( fx+e \right ) \right ) ^{2})\sqrt{c+d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt{a+b\tan \left ( fx+e \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(1/2),x)

[Out]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )} \sqrt{d \tan \left (f x + e\right ) + c}}{\sqrt{b \tan \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*sqrt(d*tan(f*x + e) + c)/sqrt(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d \tan{\left (e + f x \right )}} \left (A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\sqrt{a + b \tan{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(a+b*tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/sqrt(a + b*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError